Week 52 – Symptom-Triggered Benzodiazepines in Alcohol Withdrawal

“Symptom-Triggered vs Fixed-Schedule Doses of Benzodiazepine for Alcohol Withdrawal”

Arch Intern Med. 2002 May 27;162(10):1117-21. [free full text]

Treatment of alcohol withdrawal with benzodiazepines has been the standard of care for decades. However, in the 1990s, benzodiazepine therapy for alcohol withdrawal was generally given via fixed doses. In 1994, a double-blind RCT by Saitz et al. demonstrated that symptom-triggered therapy based on responses to the CIWA-Ar scale reduced treatment duration and the amount of benzodiazepine used relative to a fixed-schedule regimen. This trial had little immediate impact in the treatment of alcohol withdrawal. The authors of the 2002 double-blind RCT sought to confirm the findings from 1994 in a larger population that did not exclude patients with a history of seizures or severe alcohol withdrawal.

The trial enrolled consecutive patients admitted to the inpatient alcohol treatment units at two European universities (excluding those with “major cognitive, psychiatric, or medical comorbidity”) and randomized them to treatment with either scheduled placebo (30mg q6hrs x4, followed by 15mg q6hrs x8) with additional PRN oxazepam 15mg for CIWA score 8-15 and 30mg for CIWA score > 15 or to treatment with scheduled oxazepam (30mg q6hrs x4, followed by 15mg q6hrs x8) with additional PRN oxazepam 15mg for CIWA score 8-15 and 30mg for CIWA score > 15.

The primary outcomes were cumulative oxazepam dose at 72 hours and duration of treatment with oxazepam. Subgroup analysis included the exclusion of symptomatic patients who did not require any oxazepam. Secondary outcomes included incidence of seizures, hallucinations, and delirium tremens at 72 hours.

Results:
117 patients completed the trial. 56 had been randomized to the symptom-triggered group, and 61 had been randomized to the fixed-schedule group. The groups were similar in all baseline characteristics except that the fixed-schedule group had on average a 5-hour longer interval since last drink prior to admission. While only 39% of the symptom-triggered group actually received oxazepam, 100% of the fixed-schedule group did (p < 0.001). Patients in the symptom-triggered group received a mean cumulative dose of 37.5mg versus 231.4mg in the fixed-schedule group (p < 0.001). The mean duration of oxazepam treatment was 20.0 hours in the symptom-triggered group versus 62.7 hours in the fixed-schedule group. The group difference in total oxazepam dose persisted even when patients who did not receive any oxazepam were excluded. Among patients who did receive oxazepam, patients in the symptom-triggered group received 95.4 ± 107.7mg versus 231.4 ± 29.4mg in the fixed-dose group (p < 0.001). Only one patient in the symptom-triggered group sustained a seizure. There were no seizures, hallucinations, or episodes of delirium tremens in any of the other 116 patients. The two treatment groups had similar quality-of-life and symptom scores aside from slightly higher physical functioning in the symptom-triggered group (p < 0.01). See Table 2.

Implication/Discussion:
Symptom-triggered administration of benzodiazepines in alcohol withdrawal led to a six-fold reduction in cumulative benzodiazepine use and a much shorter duration of pharmacotherapy than fixed-schedule administration. This more restrictive and responsive strategy did not increase the risk of major adverse outcomes such as seizure or DTs and also did not result in increased patient discomfort.

Overall, this study confirmed the findings of the landmark study by Saitz et al. from eight years prior. Additionally, this trial was larger and did not exclude patients with a prior history of withdrawal seizures or severe withdrawal. The fact that both studies took place in inpatient specialty psychiatry units limits their generalizability to our inpatient general medicine populations.

Why the initial 1994 study did not gain clinical traction remains unclear. Both studies have been well-cited over the ensuing decades, and the paradigm has shifted firmly toward symptom-triggered benzodiazepine regimens using the CIWA scale. While a 2010 Cochrane review cites only the 1994 study, Wiki Journal Club and 2 Minute Medicine have entries on this 2002 study but not on the equally impressive 1994 study.

Further Reading/References:
1. “Individualized treatment for alcohol withdrawal. A randomized double-blind controlled trial.” JAMA. 1994.
2. Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised (CIWA-Ar)
3. Wiki Journal Club
4. 2 Minute Medicine
5. “Benzodiazepines for alcohol withdrawal.” Cochrane Database Syst Rev. 2010

Summary by Duncan F. Moore, MD

Image Credit: VisualBeo, CC BY-SA 3.0, via Wikimedia Commons

Week 51 – LOTT

“A Randomized Trial of Long-Term Oxygen for COPD with Moderate Desaturation”

by the Long-Term Oxygen Treatment Trial (LOTT) Research Group

N Engl J Med. 2016 Oct 27;375(17):1617-1627. [free full text]

The long-term treatment of severe resting hypoxemia (SpO2 < 89%) in COPD with supplemental oxygen has been a cornerstone of modern outpatient COPD management since its mortality benefit was demonstrated circa 1980. Subsequently, the utility of supplemental oxygen in COPD patients with moderate resting daytime hypoxemia (SpO2 89-93%) was investigated in trials in the 1990s; however, such trials were underpowered to assess mortality benefit. Ultimately, the LOTT trial was funded by the NIH and Centers for Medicare and Medicaid Services (CMS) primarily to determine if there was a mortality benefit to supplemental oxygen in COPD patients with moderate hypoxemia as well to analyze as numerous other secondary outcomes, such as hospitalization rates and exercise performance.

The LOTT trial was originally planned to enroll 3500 patients. However, after 7 months the trial had randomized only 34 patients, and mortality had been lower than anticipated. Thus in late 2009 the trial was redesigned to include broader inclusion criteria (now patients with exercise-induced hypoxemia could qualify) and the primary endpoint was broadened from mortality to a composite of time to first hospitalization or death.

The revised LOTT trial enrolled COPD patients with moderate resting hypoxemia (SpO2 89-93%) or moderate exercise-induced desaturation during the 6-minute walk test (SpO2 ≥ 80% for ≥ 5 minutes and < 90% for ≥ 10 seconds). Patients were randomized to either supplemental oxygen (24-hour oxygen if resting SpO2 89-93%, otherwise oxygen only during sleep and exercise if the desaturation occurred only during exercise) or to usual care without supplemental oxygen. Supplemental oxygen flow rate was 2 liters per minute and could be uptitrated by protocol among patients with exercise-induced hypoxemia. The primary outcome was time to composite of first hospitalization or death. Secondary outcomes included hospitalization rates, lung function, performance on 6-minute walk test, and quality of life.

368 patients were randomized to the supplemental-oxygen group and 370 to the no-supplemental-oxygen group. Of the supplemental-oxygen group, 220 patients were prescribed 24-hour oxygen support, and 148 were prescribed oxygen for use during exercise and sleep only. Median duration of follow-up was 18.4 months. Regarding the primary outcome, there was no group difference in time to death or first hospitalization (p = 0.52 by log-rank test). See Figure 1A. Furthermore, there were no treatment-group differences in the primary outcome among patients of the following pre-specified subgroups: type of oxygen prescription, “desaturation profile,” race, sex, smoking status, SpO2 nadir during 6-minute walk, FEV1, BODE  index, SF-36 physical-component score, BMI, or history of anemia. Patients with a COPD exacerbation in the 1-2 months prior to enrollment, age 71+ at enrollment, and those with lower Quality of Well-Being Scale score at enrollment all demonstrated benefit from supplemental O2, but none of these subgroup treatment effects were sustained when the analyses were adjusted for multiple comparisons. Regarding secondary outcomes, there were no treatment-group differences in rates of all-cause hospitalizations, COPD-related hospitalizations, or non-COPD-related hospitalizations, and there were no differences in change from baseline measures of quality of life, anxiety, depression, lung function, and distance achieved in 6-minute walk.

The LOTT trial presents compelling evidence that there is no significant benefit, mortality or otherwise, of oxygen supplementation in patients with COPD and either moderate hypoxemia at rest (SpO2 > 88%) or exercise-induced hypoxemia. Although this trial’s substantial redesign in its early course is noted, the trial still is our best evidence to date about the benefit (or lack thereof) of oxygen in this patient group. As acknowledged by the authors, the trial may have had significant selection bias in referral. (Many physicians did not refer specific patients for enrollment because “they were too ill or [were believed to have benefited] from oxygen.”) Another notable limitation of this study is that nocturnal oxygen saturation was not evaluated. The authors do note that “some patients with COPD and severe nocturnal desaturation might benefit from nocturnal oxygen supplementation.”

For further contemporary contextualization of the study, please see the excellent post at PulmCCM from 11/2016. Included in that post is a link to an overview and Q&A from the NIH regarding the LOTT study.

References / Additional Reading:
1. PulmCCM, “Long-term oxygen brought no benefits for moderate hypoxemia in COPD”
2. LOTT @ 2 Minute Medicine
3. LOTT @ ClinicalTrials.gov
4. McDonald, J.H. 2014. Handbook of Biological Statistics (3rd ed.). Sparky House Publishing, Baltimore, Maryland.
5. Centers for Medicare and Medicaid Services, “Certificate of Medical Necessity CMS-484– Oxygen”
6. Ann Am Thorac Soc. 2018 Dec;15(12):1369-1381. “Optimizing Home Oxygen Therapy. An Official American Thoracic Society Workshop Report.”

Summary by Duncan F. Moore, MD

Image Credit: Patrick McAleer, CC BY-SA 2.0 UK, via Wikimedia Commons

Week 49 – Donor-Feces Infusion for Recurrent C. difficile

“Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile

N Engl J Med. 2013 Jan 31;368(5):407-15. [free full text]

Clostridioides (formerly Clostridium) difficile infection (CDI) is a common, increasingly prevalent, and increasingly recurrent disease. As discussed in the 2017-2018 Academic Year Week 43 post, the IDSA/SHEA guidelines published March 2018 now list vancomycin PO as first line treatment for initial, non-severe CDI. These guidelines also list fecal microbiota transplantation (FMT) as an option for treatment of a second or subsequent recurrence of CDI. FMT received a rating of “Strong [recommendation] / Moderate [level of evidence]” for this indication thanks to this 2013 trial by van Nood et al. – the first prospective RCT to compare antibiotic therapy to FMT in recurrent CDI.

This single-academic-center (Netherlands), open-label, randomized controlled trial compared three regimens for the treatment of recurrent CDI. One treatment arm received vancomycin 500mg PO QID x4-5 days followed by bowel lavage and then infusion of donor feces through nasoduodenal tube, another treatment arm received a standard 14-day vancomycin 500mg PO QID regimen, and the final treatment arm received a standard 14-day vancomycin regimen with additional bowel lavage on day 4 or 5. The primary endpoint was cure without relapse by 10 weeks.

43 patients were randomized prior to the termination of the trial due to the markedly higher rates of recurrent CDI among patients who did not receive FMT. Regarding the primary outcome, 13 (81%) of the FMT group were cured after the first infusion (and remained so) at 10 weeks, whereas resolution of CDI occurred in only 4 (31%) of the vancomycin-alone group and in only 3 (23%) of the vancomycin + bowel lavage group (p < 0.001 for both pairwise comparisons vs. FMT).

In this randomized controlled trial, fecal microbiota transplantation was superior to both vancomycin and vancomycin plus bowel lavage in the cure of recurrent Clostridioides difficile infection. Although this trial was small, its effect was enormous. As mentioned above, FMT is now recommended by guidelines for the treatment of multiply-recurrent CDI. FMT has been the subject of numerous published and ongoing trials, including this notable 2017 study by Kao et al. that demonstrated noninferiority of FMT delivered via oral capsules versus “conventional” colonoscopic delivery.

Further Reading/References:
1. Wiki Journal Club
2. 2 Minute Medicine
3. 2017 Update to IDSA/SHEA Clinical Practice Guidelines for Clostridium difficile Infection
4. Kao et. al, “Effect of Oral Capsule- vs Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection.” JAMA. 2017;318(20):1985-1993.
5. IDSA, “Fecal Microbiota Transplantation”
6. Food and Drug Administration, “Enforcement Policy Regarding Investigational New Drug Requirements for Use of Fecal Microbiota for Transplantation to Treat Clostridium difficile Infection Not Responsive to Standard Therapies”

Summary by Duncan F. Moore, MD

Image Credit: CDC/ Lois S. Wiggs (PHIL #6260), Public Domain, via Wikimedia Commons

Week 48 – Sepsis-3

“The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)”

JAMA. 2016 Feb 23;315(8):801-10. [free full text]

In practice, we recognize sepsis as a potentially life-threatening condition that arises secondary to infection. Because the SIRS criteria were of limited sensitivity and specificity in identifying sepsis and because our understanding of the pathophysiology of sepsis had purportedly advanced significantly during the interval since the last sepsis definition, an international task force of 19 experts was convened to define and prognosticate sepsis more effectively. The resulting 2016 Sepsis-3 definition was the subject of immediate and sustained controversy.

In the words of Sepsis-3, sepsis simply “is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.” The paper further defines organ dysfunction in terms of a threshold change in the SOFA score by 2+ points. However, the authors state that “the SOFA score is not intended to be used as a tool for patient management but as a means to clinically characterize a septic patient.” The authors note that qSOFA, an easier tool introduced in this paper, can identify promptly at the bedside patients “with suspected infection who are likely to have a prolonged ICU stay or die in the hospital.” A positive screen on qSOFA is identified as 2+ of the following: AMS, SBP ≤ 100, or respiratory rate ≥ 22. At the time of this endorsement of qSOFA, the tool had not been validated prospectively. Finally, septic shock was defined as sepsis with persistent hypotension requiring vasopressors to maintain MAP ≥ 65 and with a serum lactate > 2 despite adequate volume resuscitation.

As noted contemporaneously in the excellent PulmCrit blog post “Top ten problems with the new sepsis definition,” Sepsis-3 was not endorsed by the American College of Chest Physicians, the IDSA, any emergency medicine society, or any hospital medicine society. On behalf of the American College of Chest Physicians, Dr. Simpson published a scathing rejection of Sepsis-3 in Chest in May 2016. He noted “there is still no known precise pathophysiological feature that defines sepsis.” He went on to state “it is not clear to us that readjusting the sepsis criteria to be more specific for mortality is an exercise that benefits patients,” and said “to abandon one system of recognizing sepsis [SIRS] because it is imperfect and not yet in universal use for another system that is used even less seems unwise without prospective validation of that new system’s utility.”

In fact, the later validation of qSOFA demonstrated that the SIRS criteria had superior sensitivity for predicting in-hospital mortality while qSOFA had higher specificity. See the following posts at PulmCrit for further discussion: [https://emcrit.org/isepsis/isepsis-sepsis-3-0-much-nothing/] [https://emcrit.org/isepsis/isepsis-sepsis-3-0-flogging-dead-horse/].

At UpToDate, authors note that “data of the value of qSOFA is conflicting,” and because of this, “we believe that further studies that demonstrate improved clinically meaningful outcomes due to the use of qSOFA compared to clinical judgement are warranted before it can be routinely used to predict those at risk of death from sepsis.”

Additional Reading:
1. PulmCCM, “Simple qSOFA score predicts sepsis as well as anything else”
2. 2 Minute Medicine

Summary by Duncan F. Moore, MD

Image Credit: Mark Oniffrey, CC BY-SA 4.0, via Wikimedia Commons

Week 46 – COURAGE

 

“Optimal Medical Therapy with or without PCI for Stable Coronary Disease”

by the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) Trial Research Group

N Engl J Med. 2007 Apr 12;356(15):1503-16 [free full text]

The optimal medical management of stable coronary artery disease has been well-described. However, prior to the 2007 COURAGE trial, the role of percutaneous coronary intervention (PCI) in the initial management of stable coronary artery disease was unclear. It was known that PCI improved angina symptoms and short-term exercise performance in stable disease, but its mortality benefit and reduction of future myocardial infarction and ACS were unknown.

The trial recruited patients with stable coronary artery disease. (See paper for inclusion/exclusion criteria. Disease had to be sufficiently and objectively severe, but not too severe, and symptoms could not be sustained at the highest CCS grade.) Patients were randomized to either optimal medical management (including antiplatelet, anti-anginal, ACEi/ARB, and cholesterol-lowering therapy) and PCI or to optimal medical management alone. The primary outcome was a composite of all-cause mortality and non-fatal MI.

2287 patients were randomized. Both groups had similar baseline characteristics with the exception of a higher prevalence of proximal LAD disease in the medical-therapy group. Median duration of follow-up was 4.6 years in both groups. Death or non-fatal MI occurred in 18.4% of the PCI group and in 17.8% of the medical-therapy group (p = 0.62). Death, non-fatal MI, or stroke occurred in 20.0% of the PCI group and 19.5% of the medical-therapy group (p = 0.62). Hospitalization for ACS occurred in 12.4% of the PCI group and 11.8% of the medical-therapy group (p = 0.56). Revascularization during follow-up was performed in 21.1% of the PCI group but in 32.6% of the medical-therapy group (HR 0.60, 95% CI 0.51–0.71, p < 0.001). Finally, 66% of PCI patients were free of angina at 1 year follow-up compared with 58% of medical-therapy patients (p < 0.001); rates were 72% and 67% at 3 years (p=0.02) and 72% and 74% at five years (not significant).

Thus, in the initial management of stable coronary artery disease, PCI in addition to optimal medical management provided no mortality benefit over optimal medical management alone. However, initial management with PCI did provide a time-limited improvement in angina symptoms.

As the authors of COURAGE nicely summarize on page 1512, the atherosclerotic plaques of ACS and stable CAD are different. Vulnerable, ACS-prone plaques have thin caps and spread outward along the wall of the coronary artery, as opposed to the plaques of stable CAD which have thick fibrous caps and are associated with inward-directed remodeling that narrows the artery lumen (and thus cause reliable angina symptoms and luminal narrowing on coronary angiography).

Notable limitations of this study: 1) the population was largely male, white, and 42% came from VA hospitals, thus limiting generalizability of the study; 2) drug-eluting stents were not clinically available until the last 6 months of the study, so most stents placed were bare metal.

Later meta-analyses were weakly suggestive of an association of PCI with improved all-cause mortality. It is thought that there may be a subset of patients with stable CAD who achieve a mortality benefit from PCI.

The 2017 ORBITA trial made headlines and engendered sustained controversy when it demonstrated in a randomized trial that, in the context of optimal medical therapy, PCI did not increase exercise time more than did a sham-PCI. Take note of the relatively savage author’s reply to commentary regarding the trial. See blog discussion here. The ORBITA-2 trial is currently underway.

Last month, the ISCHEMIA trial was published in NEJM. It demonstrated that among patients with stable CAD and moderate to severe ischemia, an initial invasive strategy did not reduce the risk of ischemic cardiovascular events or death from any cause at a median of 3.2 years follow-up.

It is important to note that all of the above discussions assume that the patient does not have specific coronary artery anatomy in which initial CABG would provide a mortality benefit (e.g. left main disease, multi-vessel disease with decreased LVEF). Finally, PCI should be considered in patients whose physical activity is limited by angina symptoms despite optimal medical therapy.

Further Reading:
1. COURAGE @ Wiki Journal Club
2. COURAGE @ 2 Minute Medicine
3. Canadian Cardiovascular Society grading of angina pectoris
4. ORBITA-2 @ ClinicalTrials.gov
5. ISCHEMIA @ ClinicalTrials.gov
6. Discussion re: ISCHEMIA trial changes @ CardioBrief
7. ISCHEMIA full text @ NEJM

Summary by Duncan F. Moore, MD

Image Credit: National Institutes of Health, US Public Domain, via Wikimedia Commons

Week 44 – SYMPLICITY HTN-3

“A Controlled Trial of Renal Denervation for Resistant Hypertension”

N Engl J Med. 2014 Apr 10;370(15):1393-401. [free full text]

Approximately 10% of patients with hypertension have resistant hypertension (SBP > 140 despite adherence to three maximally tolerated doses of antihypertensives, including a diuretic). Evidence suggests that the sympathetic nervous system plays a large role in such cases, so catheter-based radiofrequency ablation of the renal arteries (renal denervation therapy) was developed as a potential treatment for resistant HTN. The 2010 SYMPLICITY HTN-2 trial was a small (n = 106), non-blinded, randomized trial of renal denervation vs. continued care with oral antihypertensives that demonstrated a remarkable 30-mmHg greater decrease in SBP with renal denervation. Thus the 2014 SYMPLICITY HTN-3 trial was designed to evaluate the efficacy of renal denervation in a single-blinded trial with a sham-procedure control group.

The trial enrolled adults with resistant HTN with SBP ≥ 160 despite adherence to 3+ maximized antihypertensive drug classes, including a diuretic. (Pertinent exclusion criteria included secondary hypertension, renal artery stenosis > 50%, prior renal artery intervention.) Patients were randomized to either renal denervation with the Symplicity (Medtronic) radioablation catheter or to renal angiography only (sham procedure). The primary outcome was the mean change in office systolic BP from baseline at 6 months. (The examiner was blinded to intervention.) The secondary outcome was the change in mean 24-hour ambulatory SBP at 6 months. The primary safety endpoint was a composite of death, ESRD, embolic event with end-organ damage, renal artery or other vascular complication, hypertensive crisis within 30 days, or new renal artery stenosis of > 70%.

535 patients were randomized. On average, patients were receiving five antihypertensive medications. There was no significant difference in reduction of SBP between the two groups at 6 months. ∆SBP was -14.13 ± 23.93 mmHg in the denervation group vs. -11.74 ± 25.94 mmHg in the sham-procedure group for a between-group difference of -2.39 mmHg (95% CI -6.89 to 2.12, p = 0.26 with a superiority margin of 5 mmHg). The change in 24-hour ambulatory SBP at 6 months was -6.75 ± 15.11 mmHg in the denervation group vs. -4.79 ± 17.25 mmHg in the sham-procedure group for a between-group difference of -1.96 mmHg (95% CI -4.97 to 1.06, p = 0.98 with a superiority margin of 2 mmHg). There was no significant difference in the prevalence of the composite safety endpoint at 6 months with 4.0% of the denervation group and 5.8% of the sham-procedure group reaching the endpoint (percentage-point difference of -1.9, 95% CI -6.0 to 2.2).

In patients with resistant hypertension, renal denervation therapy provided no reduction in SBP at 6-month follow-up relative to a sham procedure.

This trial was an astounding failure for Medtronic and its Symplicity renal denervation radioablation catheter. The magnitude of the difference in results between the non-blinded, no-sham-procedure SYMPLICITY HTN-2 trial and this patient-blinded, sham-procedure-controlled trial is likely a product of 1) a marked placebo effect of procedural intervention, 2) Hawthorne effect in the non-blinded trial, and 3) regression toward the mean (patients were enrolled based on unusually high BP readings that over the course of the trial declined to reflect a lower true baseline).

Currently, there is no role for renal denervation therapy in the treatment of resistant HTN. However, despite the results of SYMPLICITY HTN-3, additional trials have since been conducted that assess the utility of renal denervation in patients with HTN not classified as resistant. SPYRAL HTN-ON MED demonstrated a benefit of renal denervation beyond that of a sham procedure (7.4 mmHg lower relative difference of SBP on 24hr ambulatory monitoring) in the continued presence of baseline antihypertensives. RADIANCE HTN-SOLO demonstrated a 6.3 mmHg greater reduction in daytime ambulatory SBP among ablated patients than that of sham-treatment patients notably after a 4-week discontinuation of up to two home antihypertensives. However, despite these two recent trials, the standard of care for the treatment of non-resistant HTN remains our affordable and safe default of multiple pharmacologic agents as well as lifestyle interventions.

Further Reading/References:
1. NephJC, SYMPLICITY HTN-3
2. UpToDate, “Treatment of resistant hypertension,” heading “Renal nerve denervation”

Summary by Duncan F. Moore, MD

Week 43 – STOPAH

“Prednisolone or Pentoxifylline for Alcohol Hepatitis”

aka the Steroids or Pentoxifylline for Alcoholic Hepatitis (STOPAH) trial

N Engl J Med. 2015 Apr 23;372(17):1619-28. [free full text]

Severe alcoholic hepatitis is associated with short-term mortality as high as 30%. Treatment of alcoholic hepatitis with corticosteroids has been extensively studied and debated. Prior to this 2010 study, an analysis of the five largest studies of glucocorticoid treatment in alcoholic hepatitis concluded that there was a significant mortality benefit at 28 days among patients with severe disease. Similarly, the nonselective phosphodiesterase inhibitor pentoxifylline has been evaluated in alcoholic hepatitis. One of four RCTs showed a significant benefit, but two meta-analyses have not concluded that there is any benefit. The authors of the 2010 STOPAH trial sought to evaluate both therapies compared to placebos in a 2-by-2 factorial design.

The trial enrolled adults with a clinical diagnosis of alcoholic hepatitis, average alcohol consumption > 80 gm/day in men or 60 gm/day in women, total bilirubin > 4.7mg/dL, and a Maddrey discriminant function ≥ 32. Patients were randomized to one of the following four groups for 28 days of treatment.

      1. prednisolone-matched placebo daily + pentoxifylline-matched placebo TID
      2. prednisolone 40mg daily + pentoxifylline-matched placebo TID
      3. prednisolone-matched placebo daily + pentoxifylline 400mg TID
      4. prednisolone 40mg placebo daily + pentoxifylline 400mg TID

The primary outcome was 28-day mortality. The major secondary outcome was mortality or liver transplant at 90 days and at 1 year.

Regarding randomization of the 1103 patients, 276 were randomized to placebo-placebo, 277 to prednisolone-placebo, 276 to pentoxifylline-placebo, and 274 to prednisolone-pentoxifylline. The trial was stopped early due to “limitations on funding.” However, all enrolled patients completed at least 28 days of follow-up. 33 patients were unable to complete 90-day and 1-year follow-up due to termination of the trial.

At 28 days, 45 of 269 (17%) of placebo-placebo patients, 38 of 266 (14%) of prednisolone-placebo patients, 50 of 258 (19%) of pentoxifylline-placebo patients, and 35 of 260 (13%) of prednisolone-pentoxifylline patients had died. The odds ratio for 28-day mortality among patients treated with prednisolone was 0.72 (95% CI 0.52-1.01, p = 0.06), and the odds ratio for patients treated with pentoxifylline was 1.07 (95% CI 0.77-1.49, p = 0.69).

Similarly, neither treatment was found to influence 90-day or 1-year mortality or liver transplantation. (See Table 2.) Infection occurred in 13% of patients who received prednisolone versus 7% of patients who did not receive prednisolone.

Implication/Discussion:
In patients with severe alcoholic hepatitis, neither prednisolone nor pentoxifylline reduced morality risk at 28 days. Additionally, neither drug reduced the combined secondary endpoint of mortality or liver transplantation at 90 days or 1 year.

This was a well-designed, randomized, double-blind, double-placebo-controlled trial. A notable limitation was this trial’s reliance on the clinical diagnosis of alcohol hepatitis, rather than tissue diagnosis. This may have reduced the power of the trial with respect to detecting a treatment effect. Contemporary authors also noted that harm may have come to study patients due to a lack of tapering of prednisolone at the end of the 28 days of treatment.

A 2015 meta-analysis that included the STOPAH trial concluded that prednisolone treatment reduced 28-day mortality.

Despite the negative results of this specific trial, corticosteroid treatment has remained a mainstay of the treatment of severe alcoholic hepatitis.

The generally accepted practice, as summarized by UpToDate, is treatment with prednisolone 40mg PO daily for 28 days in patients with discriminant function ≥ 32. (Prednisolone is preferred over prednisone because prednisone requires conversion in the liver to its active form prednisolone, and such conversion can be impaired in liver dysfunction.) Therapy should be terminated early after 7 days if patients fail to show improvement (either by parameters such as bilirubin or discriminant function or by improvement in the Lille score).

Further Reading/References:
1. STOPAH @ Wiki Journal Club
2. STOPAH @ 2 Minute Medicine
3. UpToDate, “Management and prognosis of alcoholic hepatitis”
4. American College of Gastroenterology, “ACG Clinical Guideline: Alcoholic Liver Disease” (2018)
5. European Association for Study of the Liver (EASL), “EASL Clinical Practice Guidelines: Management of Alcoholic Liver Disease” (2012)

Summary by Duncan F. Moore, MD

Image Credit: University of Alabama at Birmingham Department of Pathology, CC BY-SA 2.5, via Wikimedia Commons

Week 42 – RAVE

“Rituximab versus Cyclophosphamide for ANCA-Associated Vasculitis”

by the Rituximab in ANCA-Associated Vasculitis-Immune Tolerance Network (RAVE-ITN) Research Group

N Engl J Med. 2010 Jul 15;363(3):221-32. [free full text]

ANCA-associated vasculitides, such as granulomatosis with polyangiitis (GPA, formerly Wegener’s granulomatosis) and microscopic polyangiitis (MPA) are often rapidly progressive and highly morbid. Mortality in untreated generalized GPA can be as high as 90% at 2 years. Since the early 1980s, cyclophosphamide (CYC) with corticosteroids has been the best treatment option for induction of disease remission in GPA and MPA. Unfortunately, the immediate and delayed adverse effect profile of CYC can be burdensome. The role of B lymphocytes in the pathogenesis of these diseases has been increasingly appreciated over the past 20 years, and this association inspired uncontrolled treatment studies with the anti-CD20 agent rituximab that demonstrated promising preliminary results. Thus the RAVE trial was performed to compare rituximab to cyclophosphamide, the standard of care.

Population:      ANCA-positive patients with “severe” GPA or MPA and a Birmingham Vasculitis Activity Score for Wegener’s Granulomatosis (BVAS/WG) of 3+.

notable exclusion: patients intubated due to alveolar hemorrhage, patients with Cr > 4.0

Intervention:    rituximab 375mg/m2 IV weekly x4 + daily placebo-CYC + pulse-dose corticosteroids with oral maintenance and then taper

Comparison:   placebo-rituximab infusion weekly x4 + daily CYC + pulse-dose corticosteroids with oral maintenance and then taper


Outcome
:

primary end point = clinical remission, defined as a BVAS/WG of 0 and successful completion of prednisone taper

primary outcome = noninferiority of rituximab relative to CYC in reaching 1º end point

authors specified non-inferiority margin as a -20 percentage point difference in remission rate

subgroup analyses (pre-specified) = type of ANCA-associated vasculitis, type of ANCA, “newly-diagnosed disease,” relapsing disease, alveolar hemorrhage, and severe renal disease

secondary outcomes = rate of disease flares, BVAS/WG of 0 during treatment with prednisone at a dose of less than 10mg/day, cumulative glucocorticoid dose, rates of adverse events, SF-36 scores


Results
:
197 patients were randomized, and baseline characteristics were similar among the two groups (e.g. GPA vs. MPA, relapsed disease, etc.). 75% of patients had GPA. 64% of the patients in the rituximab group reached remission, while 53% of the control patients did. This 11 percentage point difference among the treatment groups was consistent with non-inferiority (p < 0.001). However, although more rituximab patients reached the primary endpoint, the difference between the two groups was statistically insignificant, and thus superiority of rituximab could not be established (95% CI -3.2 – 24.3 percentage points difference, p = 0.09). Subgroup analysis was notable only for superiority of rituximab in relapsed patients (67% remission rate vs. 42% in controls, p=0.01). Rates of adverse events and treatment discontinuation were similar among the two groups.

Implication/Discussion:
Rituximab + steroids is as effective as cyclophosphamide + steroids in inducing remission in severe GPA and MPA.

This study initiated a major paradigm shift in the standard of care of ANCA-associated vasculitis. The following year, the FDA approved rituximab + steroids as the first-ever treatment regimen approved for GPA and MPA.  It spurred numerous follow up trials, and to this day expert opinion is split over whether CYC or rituximab should be the initial immunosuppressive therapy in GPA/MPA with “organ-threatening or life-threatening disease.”

Non-inferiority trials are increasingly common, and careful attention needs to be paid to their methodology. Please read more in the following two articles: [http://www.nejm.org/doi/full/10.1056/NEJMra1510063] and [http://www.rds-sc.nihr.ac.uk/study-design/quantitative-studies/clinical-trials/non-inferiority-trials/]

Further Reading/References:
1. “Wegener granulomatosis: an analysis of 158 patients” (1992)
2. RAVE @ ClinicalTrials.gov
3. “Challenges in the Design and Interpretation of Noninferiority Trials,” NEJM (2017)
4. “Clinical Trials – Non-inferiority Trials”
5. RAVE @ Wiki Journal Club
6. RAVE @ 2 Minute Medicine

Summary by Duncan F. Moore, MD

Week 40 – Early Palliative Care in NSCLC

“Early Palliative Care for Patients with Metastatic Non-Small-Cell Lung Cancer”

N Engl J Med. 2010 Aug 19;363(8):733-42. [free full text]

Ideally, palliative care improves a patient’s quality of life while facilitating appropriate usage of healthcare resources. However, initiating palliative care late in a disease course or in the inpatient setting may limit these beneficial effects. This 2010 study by Temel et al. sought to demonstrate benefits of early integrated palliative care on patient-reported quality-of-life (QoL) outcomes and resource utilization.

The study enrolled outpatients with metastatic NSCLC diagnosed < 8 weeks prior and ECOG performance status 0-2 and randomized them to either “early palliative care” (met with palliative MD/ARNP within 3 weeks of enrollment and at least monthly afterward) or to standard oncologic care. The primary outcome was the change in Trial Outcome Index (TOI) from baseline to 12 weeks.

TOI = sum of the lung cancer, physical well-being, and functional well-being subscales of the Functional Assessment of Cancer Therapy­–Lung (FACT-L) scale (scale range 0-84, higher score = better function)

Secondary outcomes included:

      • change in FACT-L score at 12 weeks (scale range 0-136)
      • change in lung cancer subscale of FACT-L at 12 weeks (scale range 0-28)
      • “aggressive care,” meaning one of the following: chemo within 14 days before death, lack of hospice care, or admission to hospice ≤ 3 days before death
      • documentation of resuscitation preference in outpatient records
      • prevalence of depression at 12 weeks per HADS and PHQ-9
      • median survival

151 patients were randomized. Palliative-care patients (n = 77) had a mean TOI increase of 2.3 points vs. a 2.3-point decrease in the standard-care group (n = 73) (p = 0.04). Median survival was 11.6 months in the palliative group vs. 8.9 months in the standard group (p = 0.02). (See Figure 3 on page 741 for the Kaplan-Meier curve.) Prevalence of depression at 12 weeks per PHQ-9 was 4% in palliative patients vs. 17% in standard patients (p = 0.04). Aggressive end-of-life care was received in 33% of palliative patients vs. 53% of standard patients (p = 0.05). Resuscitation preferences were documented in 53% of palliative patients vs. 28% of standard patients (p = 0.05). There was no significant change in FACT-L score or lung cancer subscale score at 12 weeks.

Implication/Discussion:
Early palliative care in patients with metastatic non-small cell lung cancer improved quality of life and mood, decreased aggressive end-of-life care, and improved survival. This is a landmark study, both for its quantification of the QoL benefits of palliative intervention and for its seemingly counterintuitive finding that early palliative care actually improved survival.

The authors hypothesized that the demonstrated QoL and mood improvements may have led to the increased survival, as prior studies had associated lower QoL and depressed mood with decreased survival. However, I find more compelling their hypotheses that “the integration of palliative care with standard oncologic care may facilitate the optimal and appropriate administration of anticancer therapy, especially during the final months of life” and earlier referral to a hospice program may result in “better management of symptoms, leading to stabilization of [the patient’s] condition and prolonged survival.”

In practice, this study and those that followed have further spurred the integration of palliative care into many standard outpatient oncology workflows, including features such as co-located palliative care teams and palliative-focused checklists/algorithms for primary oncology providers. Of note, in the inpatient setting, a recent meta-analysis concluded that early hospital palliative care consultation was associated with a $3200 reduction in direct hospital costs ($4250 in subgroup of patients with cancer).

Further Reading/References:
1. ClinicalTrials.gov
2. Wiki Journal Club
3. Profile of first author Dr. Temel
4. “Economics of Palliative Care for Hospitalized Adults with Serious Illness: A Meta-analysis” JAMA Internal Medicine (2018)
5. UpToDate, “Benefits, services, and models of subspecialty palliative care”

Summary by Duncan F. Moore, MD

Week 39 – Early TIPS in Cirrhosis with Variceal Bleeding

“Early Use of TIPS in Patients with Cirrhosis and Variceal Bleeding”

N Engl J Med. 2010 Jun 24;362(25):2370-9. [free full text]

Variceal bleeding is a major cause of morbidity and mortality in decompensated cirrhosis. The standard of care for an acute variceal bleed includes a combination of vasoactive drugs, prophylactic antibiotics, and endoscopic techniques (e.g. banding). Transjugular intrahepatic portosystemic shunt (TIPS) can be used to treat refractory bleeding. This 2010 trial sought to determine the utility of early TIPS during the initial bleed in high-risk patients when compared to standard therapy.

The trial enrolled cirrhotic patients (Child-Pugh class B or C with score ≤ 13) with acute esophageal variceal bleeding. All patients received endoscopic band ligation (EBL) or endoscopic injection sclerotherapy (EIS) at the time of diagnostic endoscopy. All patients also received vasoactive drugs (terlipressin, somatostatin, or octreotide). Patients were randomized to either TIPS performed within 72 hours after diagnostic endoscopy or to “standard therapy” by 1) treatment with vasoactive drugs with transition to nonselective beta blocker when patients were free of bleeding followed by 2) addition of isosorbide mononitrate to maximum tolerated dose, and 3) a second session of EBL at 7-14 days after the initial session (repeated q10-14 days until variceal eradication was achieved). The primary outcome was a composite of failure to control acute bleeding or failure to prevent “clinically significant” variceal bleeding (requiring hospital admission or transfusion) at 1 year after enrollment. Selected secondary outcomes included 1-year mortality, development of hepatic encephalopathy (HE), ICU days, and hospital LOS.

359 patients were screened for inclusion, but ultimately only 63 were randomized. Baseline characteristics were similar among the two groups except that the early TIPS group had a higher rate of patients with previous hepatic encephalopathy. The primary composite endpoint of failure to control acute bleeding or rebleeding within 1 year occurred in 14 of 31 (45%) patients in the pharmacotherapy-EBL group and in only 1 of 32 (3%) of the early TIPS group (p = 0.001). The 1-year actuarial probability of remaining free of the primary outcome was 97% in the early TIPS group vs. 50% in the pharmacotherapy-EBL group (ARR 47 percentage points, 95% CI 25-69 percentage points, NNT 2.1). Regarding mortality, at one year, 12 of 31 (39%) patients in the pharmacotherapy-EBL group had died, while only 4 of 32 (13%) in the early TIPS group had died (p = 0.001, NNT = 4.0). There were no group differences in prevalence of HE at one year (28% in the early TIPS group vs. 40% in the pharmacotherapy-EBL group, p = 0.13). Additionally, there were no group differences in 1-year actuarial probability of new or worsening ascites. There were also no differences in length of ICU stay or hospitalization duration.

Early TIPS in acute esophageal variceal bleeding, when compared to standard pharmacotherapy and endoscopic band ligation, improved control of index bleeding, reduced recurrent variceal bleeding at 1 year, and reduced all-cause mortality. Prior studies had demonstrated that TIPS reduced the rebleeding rate but increased the rate of hepatic encephalopathy without improving survival. As such, TIPS had only been recommended as a rescue therapy. In contrast, this study presents compelling data that challenge these paradigms. The authors note that in “patients with Child-Pugh class C or in class B with active variceal bleeding, failure to initially control the bleeding or early rebleeding contributes to further deterioration in liver function, which in turn worsens the prognosis and may preclude the use of rescue TIPS.” Despite this, today, TIPS remains primarily a salvage therapy for use in cases of recurrent bleeding despite standard pharmacotherapy and EBL. There may be a subset of patients in whom early TIPS is the ideal strategy, but further trials will be required to identify this subset.

Further Reading/References:
1. Wiki Journal Club
2. 2 Minute Medicine
3. UpToDate, “Prevention of recurrent variceal hemorrhage in patients with cirrhosis”

Summary by Duncan F. Moore, MD